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Multiple cracking of a coating layer and its 
influence on fibre strength 
Part I Calculation of the energy release rate of the fibre at cracks for 
non-uniform crack spacing 

S. O C H I A I ,  M. HOJO 
Mesoscopic Materials Research Centre, Faculty of Engineering, Kyoto University, Kyoto 606, 
Japan 

A calculation method to describe the influence of the non-uniform crack-spacing in a strongly 
adhering coating layer, which shows multiple cracking, on the energy release rate of a coated fibre 
is presented and applied to some examples. Four main results were found. The energy release rate 
of the fibre at the crack in the region of narrow crack-spacing was low. For any crack-spacing, the 
energy release rate was high when the Young's modulus of the fibre was low and that of the 
coating layer was high. From the calculation of energy release rates of the fibre at all cracks, the 
strength-determining crack could be identified, and from this the fibre strength after multiple 
cracking of the coating layer could be estimated. Finally, the strength of the fibre for non-uniform 
crack spacing was lower than that for a uniform one. 

I .  Introduction 
When a fibre coated with a strongly adhering brittle 
coating layer (or a brittle interfacial reaction layer) is 
pulled in tension, the strength of the fibre is sometimes 
reduced by the formation of cracks on the fibre surface 
due to the premature fracture (cracking) of the coating 
layer [1-8]. Analytical models to describe the reduc- 
tion in fibre strength have been presented for the case 
of single cracks [1, 2, 8]. However, in practical fibres, 
the coating layer shows not only single but also mul- 
tiple cracks whose influence on fibre strength has not 
been clarified until now. 

In order to describe the strength of coated fibres 
whose coating layer shows multiple cracks (Fig. la), 
calculation method is required which enables the en- 
ergy release rate of the fibre, ;~, to be estimated at 
cracks for non-uniform crack-spacings and a method 
which enables probabilistic affairs to be described, 
such as crack spacing, location of cracks and the 
difference in cracking behaviour between samples. The 
aim of the present work was to present a calculation 
method for the energy release rate and fibre strength 
for various non-uniform crack spacings. In Part II [9], 
the multiple cracking behaviour and its influence on 
the strength of the fibre will be simulated by means of 
a Monte Carlo method in combination with the pres- 
ent calculation method. 

2. Calcu la t ion  p r o c e d u r e  
2.1. Mode l l ing  
The fibre has a radius Rf, length Lf, cross-sectional 
area Sf, Young's and shear moduli Ef and Gf, respec- 

274 

tively, and the coating layer has a thickness a, an inner 
radius Rf, an outer radius Re( = Rf + a), cross-sec- 
tional area So, and Young's and shear moduli, Ec and 
G~, respectively. Between the Young's, E, and shear G, 
moduli, the relation 

G = E/J2(1 + v)] (1) 

is assumed, where v is the Poisson's ratio. 
The shear-lag analysis technique [8, 10-15] was 

applied for calculation for simplicity. The coated fibre 
is regarded to be composed of N cylindrical elements, 
as shown in Fig. lb. The total number of elements of 
the fibre and coating layer are N1 and N 2 (  ---- N - N 1 )  , 

respectively. The element in the centre is numbered 1, 
the next 2, and then 3, 4 , . . . ,  N, outwards. The cross- 
sectional area of the ith (i = l-N) element is given by 
St. The interface between i - 1 and i elements is ex- 
pressed as (i - 1)/i interface, as shown in Fig. lc. The 
outer and inner radii of the ith element are denoted as 
R~ and Ri-1, respectively, and the distance of the 
centroid from the inner radius in the ith element as C~. 
The Young's and shear moduli of the ith element are 
denoted E~ and G~, respectively. 

In the longitudinal direction, the total number of 
cracks in the whole length of the fibre is given by Nf. 
The segments of the coating layer are numbered 
1, 2 , . . . ,  Nf + 1 and the crack spacing (the length of 
a segment of coating layer) are denoted La, 
L2 . . . . .  LN,+ 1 from one end to the other end of the 
fibre, as shown in Fig. 2a. 

The energy release rate, ;~, of the fibre at the crack 
tip will be strongly affected by the crack spacings near 
the crack considered, but not by those away from the 
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Figure 1 Modelling of the coated fibre for calculation of the strain energy release rate at cracks based on the shear lag analysis. (a) 
Configuration of the cracked coating layer. (b) Number ing of elements. (c) Stress equlibrium in element i. 
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Figure 2 (a) Definition of the length of segments of the coating layer. 
The segments are numbered from 1 to Ne + 1 for the entire length of 
the fibre, where Nf is the number  of cracks. The lengths of the 1 to 
Nf + 1 segments are defined as L1 to Lu,+ 1 respectively. (b) Defini- 
tion of X for the portion around k and k + 1 segments, to calculate 
the energy release rate at the crack between k and k + 1 segments. 

crack. To a first approximation,  X at the crack be- 
tween segments k and k + 1 (Fig. 2a) was assumed to 
be influenced by the number  of m/2 (m = even) seg- 
ments below and above the crack, as schematically 

shown in Fig. 2b. In the calculation, m was taken to be 
10 when possible, but it was taken down a place when 
the operating values during calculation exceeded an 
allowable magnitude for the computer used. 

The distance, X, in the longitudinal direction was 
defined as follows. The mid-point of the k - m/2 + 1 
segment was defined to be zero and the mid-point of 
the k + m/2 segment to be Xm. The distances of the 
cracks were defined as X1 to X, , -1 ,  as shown in Fig. 
2b. The Xj (j = 1 to m - 1) are given by 

XI  = (1/2) L k -  m/2 + l (2a) 

Xs = X j _  1 + Lk - , , / 2+ j ( j=  2 to m - -  1) (2b) 

Xm = Xr,-1  + (1/2) Lk+,,/2 (2C) 

The coating layer is cracked at X = X1 to Xm- ~ in 
the longitudinal direction, as shown in Fig. 2b. The 
regions covering 0~<X.N<Xx, X I ~ < X ~ < X 2  . . . .  , 
Xm- ~ ~< X ~< X,, were named Regions 1, 2 . . . .  , m, 
respectively. 

2.2.  Equi l ibr ium e q u a t i o n s  
We define the displacement of element i (i = 1 to 

N in Fig. lb) in Region I (I = 1 to m in Fig. 2b) from 
X = 0 as Ui(I). In any regions, the interfacial shear 
stress at the i / ( i+ 1) interface, zu(z+l)(s)(i= 1 to 
N - 1), is approximately given by [8] 

Z i / ( i + l )  (I) = H i { W i + l  ( s ) -  UI I)} (i = 1 - N -  1) (3) 

Hi = GiGi+l/[GiCi+l + Gi+l(Ri - Ci - R i -1)]  (4) 
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Zm(N+ 1) (n is zero, because the outer surface of element 
N is free (Fig. lb). From the stress equilibrium shown 
in Fig. lc, the following equations are satisfied 

S1EI[dZU~I) /dX  2] + 2 / t R t ' c l / 2  (t) = 0 (5)  

SiEi [ d  e U } n / d X  2] _~_ 2 n  [RiT, i/(i + 1) (1) - -  Ri- 1"C(i_ t)/i (I)] 

= 0 ( i = 2 t o N - 1 )  (6) 

2 (I) 2 (I) = 0 (7) SnEs[d U N/dX ] - 2nRN-tZ(N t)/N 

In order to obtain a convenient form for the prob- 
lem, Ri, Ci, Si, Ei, Gi, Hi, U~ I), Lq, X and Lf (i = 1 to 
N, I = l - m  and q = k - m / 2 + l  to k+m/2) were 
converted to the non-dimensional forms r~, q, s~, el, g~, 
hl, u~ I), lq, x and lf, respectively, similar to our pre- 
vious work E8, 10]. Then the general solution of non- 
dimensional displacement, u~ ~), was obtained, as 
shown in the Appendix. The unknown constants, 
AJ  )'s, (1 = 1 to m, J = 1 to 2N) in Equation A16 were 
solved by using the following boundary conditions. 

2.3. Boundary conditions 
For calculation of the energy release rate at X = Sin/2 
in Fig. 2b whose procedure will be shown later in 
Section 2.4, the following imaginary cases were con- 
sidered: case (a) corresponding to the situation before 
the propagation of the crack at X = X,,/2 into the 
fibre, case (b) to the situation after the propagation of 
the crack by SN~ in area (corresponding to the situ- 
ation when the N1 element is broken), and case (c) to 
the situation after the propagation of the crack by 
SNt + SNa-t in area (corresponding to the situation 
when N1 and N1 - 1 elements are broken). For these 
cases, the following boundary conditions were used. 

1. At X = 0, the displacements of all elements are 
zero. 

2. At X = X,(r = 1 to m - 1), the stresses of broken 
elements (N~ + 1 to N, N~ to N and Nt  - 1 to N for 
cases (a-c), respectively) are zero, the displacements of 
unbroken elements (1 to N1, 1 to N~ - 1 and 1 to 
N1 - 2  for cases (a-c), respectively) are continuous, 
and the stress of each element (1 to N) is continuous. 

3. The displacements of all elements are equal to 
each other at X = Xm. 

4. The load is constant at any cross-section. 

2.4. Energy release rate 
The energy release rate of the fibre, X, was calculated 
by 

X = (p2/2) t lim [C(S + AS) - C(S)]/(AS)] t (8) 
k A S ~ 0  ) 

where P is the applied load, S the area of the crack, AS 
the increment of the cross-sectional area of the crack 
and the C(S) and C(S + AS) are compliances for the 
crack areas S and S + AS, respectively. 

At X = Xm, the displacement of all elements are 
taken to be equal to each other as shown in Section 
2.3. This assumes that the incremental displacement of 
the sample due to the crack propagation at X = X,,/2 
is restricted in the region for 0 ~< X <~ X,,. Noting the 
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displacements at X = X,, for crack areas S and 
S +  AS as U(S) and U(S+ AS), respectively, 
[C(S + A S ) -  C(S)]/AS in Equation 8 is approxim- 
ately given by 

[C(S + AS) - C(S)]/AS = {[U(S + AS) 

- U(S)]/P}/AS (9) 

Using the non-dimensional forms of U and S, u and 
s given by Equations A7 and A3, respectively, Equa- 
tion 9 is rewritten as 

[c(s + AS) - C(S)]/AS = [err / (~R0]{ [u(s + As) 

- u(s)]/As}/P (10) 

where err is the net fibre stress, given by P/(n Re) 2. 
Substituting Equation 10 and P = n R 2 err into Equa- 
tion 8, we have 

~, = ( l /2)(Rfer2)[1/(EfGf)]  t/2 

{ lim [u(s + A s ) -  u(s)]/As} (11) 
A s ~ 0  

From Equation 11, X/er 2 is independent of err. The 
values of X/er 2 were calculated as follows. First u(s), 
where s is the non-dimensional cross-sectional area of 
the coating layer, was calculated by using the bound- 
ary conditions for case (a). Next, As (described as As1) 
was taken to be equal to the non-dimensional cross- 
sectional area of element N1, and the u(s + Ast) was 
obtained by using the boundary conditions for case 
(b). Then As(As2) was taken to be the sum of the 
non-dimensional cross-sectional area of elements N1 
and Nt  - 1 and u(s + As2) was obtained by using the 
boundary conditions for case (c). The value of X was 
obtained by linear extrapolation to As = 0 in Equa- 
tion 11. 

3. R e s u l t s  and  d i s c u s s i o n  
In the present work, the following values were used as 
an example: Rr = 4 ~tm, a --- 0.2 lam, Er = 200 and 
4 0 0 G P a  and E , =  100-600GPa.  The Gf and 
G, values were calculated from Equation 1 in which 
v for fibre and coating layer was taken to be 0.3. N2 
was taken to be 12. N1 was taken to be the integer of 
R2N2/[(Rf + a) 2 - R 2] when R2N2/ [(Rf + a) z - 
Rf 2] < 41 and 41 when R 2 N2/[(Rf + a) 2 - R 2] > 41 
owing to the difficulties of calculation of eigenvalues 
(Equation A17). In both cases, Si for i = 2 to N were 
taken to be equal and St was taken to be residual. 
Such a scheme can be approved because stress in the 
periphery of the fibre is strongly affected by the crack 
but not by the inner portion of the fibre away from the 
interface. This type of approximation in the shear lag 
analysis is known to be a useful tool for the descrip- 
tion of stress distribution in composite materials 
[14, 15]. 

3.1. Variation of k/cr~ with varying length of 
neighbouring segments of the coating 
layer 

Fig. 3 shows how the X/er 2 values at a crack are 
affected by the length of the neighbouring segments of 



the coating layer. In this example, the length of one 
segment, L, is varied under the condition that the 
lengths of other segments are constant (0.5 ~tm), as 
indicated in Fig. 3. The solid arrow shows the crack 
whose X/cr~ value was calculated. (In this example, the 
crack indicated by the dotted arrow is equivalent to 
that indicated by the solid arrow owing to geometrical 
symmetry.) The following features are read from 
Fig. 3. 

(i) The smaller is L, the lower X/tr 2 becomes 
(ii) The higher the Young's modulus of the fibre, 

the lower is the X/eft. 
(iii) The lower Young's modulus of the coating 

layer, E~, the lower is X/~ 2. 

3.2. X values at cracks at various locations and 
the strength of the fibre 

The crack-spacing is not uniform when multiple 
cracking of the coating layer occurs. In this section, as 
an example, locations of the cracks were assumed as 
shown in Fig. 4, and the X/or 2 at the cracks at P1-Plo 
were calculated for various combinations of Er and 
Ef values under a fixed value of a = 0.2 lam. 
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Figure 3 Variations of ;L/cr~ at the crack shown by the solid arrow 
(equivalent to the dotted one) as a function of L for the indicated 
crack spacing. E~(GPa): @ 100, (~) 200, (~) 300, @ 400, @ 500, 
(~) 600. 

X is proprotional to ere z, as typically shown in Fig. 5, 
where 1-4 refer to the cracks at positions Pa-P4 in 
Fig. 4. In this example, Ee was taken to be 200 GPa  
and Ec to be 100 and 400 GPa. Now let us estimate the 
strength of the fibre and the strength-determining 
crack by using the example shown in Fig. 5. 

Fracture of the fibre occurs when 

X ~> )v~ (12) 

where ;Lc is the critical strain energy release rate of the 
fibre for Mode I fracture. Taking the case of 
Ec = 100 GPa  in Fig. 5, if X c is 3 Jm  -2, ~, values at 
P1-P4 reach Xc at A, B, C and D, respectively. Of A-D, 
C corresponds to the lowest cyf value at X = Xr which 
will give the strength of the fibre or*, if only the cracks 
at P1-P4 are considered. In a similar manner, when 
Ec = 400 GPa, the fibre will be broken at C'. Thus, the 
fibre strengths are given by the fibre stresses corres- 
ponding to C and C', and the crack at P3 is identified 
as the strength-determining crack of the four cracks 
considered. Evidently the strength-determining crack 
has the highest X/cy] value of all the cracks. Fig. 
6 shows X/off z values of the cracks at P1-Plo for 
Er = 200 GPa  and Er = 400 GPa  as an example. The 
X/eft value is dependent on the location and is highest 
at P7 in this example. Thus, within the positions 
P~-Plo, the X value at position P7 is highest and 
reaches Xr at the lowest cyf value, indicating that the 
crack at P7 acts as the strength-determining one. In 
this way, once the geometry of crack-spacing is 
known, the fibre strength and strength-determining 
crack can be known for any number of cracks. 

If we assume that the crack spacing is uniform and 
equal to the average crack spacing, k/~f 2 would be 
3.3 nm GPa-1 ,  while it was 4.2 nm G P a - 1  (P7 crack) 
in the case of non-uniform crack spacing (Fig. 6). This 
means that, in the present non-uniform spacing, the 
strength predicted from the average crack spacing 
gives a value about 13% higher than the practical 
strength value. Thus it should be borne in mind that 
the strength value based on the average crack spacing 
tends to give higher predictions. 

Fig. 7 shows the influence of the values of Ef and 
E~ on the ;L/~ values at P1-P4 indicated in Fig. 4. The 
higher the Er and the lower the Ee, the higher X/cy~ 
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Figure 4 The assumed geometry of crack spacing for the calculation of the energy release rate at the cracks. P1-P10 show the positions of the 
cracks. The figures 0.5, 1.8, 2.2, etc., show crack spacings. 
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becomes. This suggests that the fibre strength de- 
creases with increasing Ec and decreasing El, for 
a fixed distribution of crack spacing when Xc is 
common. 

In this work, calculations were performed for some 
examples under fixed locations of cracks (crack spac- 
ings). In practice, the crack spacings in coated fibres 
vary with increasing applied stress. In Part II [9], the 
present method will be combined with a Monte Carlo 
method, and the multiple cracking behaviour of the 
coating layer as a function of applied stress and its 
influence on fibre strength will be simulated. 

4. Conclusion 
A calculation method to describe the influence of 
multiple cracking of a strongly adhering coating layer 
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on the energy release rates of fibres at the formed 
cracks has been presented. How much the crack-spac- 
ing and the Young's moduli of the fibre and coating 
layer affect the energy release rate has been demon- 
strated for specific examples. It was also shown that 
the strength-determining crack of all the cracks can be 
identified by the present method, from which the fibre 
strength after multiple cracking of the coating layer 
can be estimated. 
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Appendix 
N o n - d i m e n s i o n a l i z a t i o n  
The following non-dimensionalization was carried for 
i = l-N, I = 1-m and q = k -  m/2 + 1 to k + m/2. 

Ri = Rfr i  (A1) 

Ci = R fq{c l  = [(ri 2 + ri-12)/2] 1/2 - r , - l }  (A2) 

Si = gR2si  (A3) 

Ei = Efei (A4) 

Gi = Gfgi (A5) 

Hi-~  Gfhi /Rf  

{hi = gigi+,/[glc,+l + g i + ~ ( r , -  ci - r,_~)]} (A6) 

U~ I) = o-fgf  [ l / g f G f ) ]  1/2/111) (A7) 

Lq = Rf(Ef/Gf)l/Elq (A8) 

X = Rf(Ef /Gf) l /2x  (A9) 

Lf = Rf(Ef/Gf)l /Zlf  (A10) 

where <~f is the net stress of the fibre, given by P/(rcR 2) 



where P is the applied load. ri, ci, si, el, gi, hi, u} ~), lq, 
x and le are non-dimensionalized forms of 
Ri, Ci, Si, El, Gi, Hi, U} I), Lq, X and Lf respectively. 

General solution of u! ~) 
Substituting Equations AI-A10 into Equations 5-7 
and letting 

2rlhl/(elsi) = mi (All) 

2rl- 1hi- 1/(eisi) = ni (A12) 

we have the following simplified equations 

d2u([)/dx 2 + m] {u(z I) - u([ )} = 0 (A13) 

d2u l I ) /dx  2 + miui+ 1 (I) - -  (m i -I- ni)ul I) + rliu i_ 1 (I) ---- 0 

( i=  1 t o N -  1) (a14) 

d 2 u ~ ) / d x 2  r (I) --nNL-N --uN_l ( I ) ]=0  (A15) 

Solving Equations A13-A15, we have the following 
general solutions of ul I). 

2 ( N -  1) 

u(1) = ~ A])Bi jexp(ks  x) Jr- A2N I(I)x qL AZN(I) i 
Y=l 

(A16) 

where AJ)s are unknown constants. Of the kj values 
(J = 1 to 2((N - 1)), the relation of kj+u-1 = - kj 
(forJ = 1 to N - 1) is retained. (ks)Zs (J = 1 to N - 1) 
are eigenvalues, except zero for the matrix TN given by 

m I - m 1 

- -  n2 m 2 -Jr- F / 2  - -  m2 

- -  t / 3  m 3 -I- n 3 - -  D'/3 
T~ = 

0 
- -  nN_ 1 

and Bi, ss are constants given by 

B1 , j=  1 ( J =  1 t o N - l )  (A18) 

B z , s = ( 1 - k ~ / m l ) B 1 j  ( J =  1 t o N -  1) (A19) 

Bi, s = (1 + n i - 1 / m i - 1  --  k~/mi-a)Bi-l ,S 

--  (rli-  1 / m i -  1 ) B i -  2,s 

( i = 3  t o N ,  J = l  t o N -  1) (A20) 

The Bijs  are common in all regions. 
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